کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
524043 | 868546 | 2013 | 14 صفحه PDF | دانلود رایگان |

• The new parallel algorithm for solving SLAEs with the same block-tridiagonal matrix is proposed.
• The dichotomy algorithm allows an effective use of the domain decomposition on a supercomputer.
• The band preconditioner can be successfully implemented on supercomputers.
In this study, we develop a new parallel algorithm for solving systems of linear algebraic equations with the same block-tridiagonal matrix but with different right-hand sides. The method is a generalization of the parallel dichotomy algorithm for solving systems of linear equations with tridiagonal matrices [1]. Using this approach, we propose a parallel realization of the domain decomposition method (the Schur complement method). The calculation of acoustic wave fields using the spectral-difference technique improves the efficiency of the parallel algorithms. A near-linear dependence of the speedup with the number of processors is attained using both several and several thousands of processors. This study is innovative because the parallel algorithm developed for solving block-tridiagonal systems of equations is an effective and simple set of procedures for solving engineering tasks on a supercomputer.
Journal: Parallel Computing - Volume 39, Issues 6–7, June–July 2013, Pages 245–258