کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
524656 868810 2012 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis and performance estimation of the Conjugate Gradient method on multiple GPUs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Analysis and performance estimation of the Conjugate Gradient method on multiple GPUs
چکیده انگلیسی

The Conjugate Gradient (CG) method is a widely-used iterative method for solving linear systems described by a (sparse) matrix. The method requires a large amount of Sparse-Matrix Vector (SpMV) multiplications, vector reductions and other vector operations to be performed. We present a number of mappings for the SpMV operation on modern programmable GPUs using the Block Compressed Sparse Row (BCSR) format. Further, we show that reordering matrix blocks substantially improves the performance of the SpMV operation, especially when small blocks are used, so that our method outperforms existing state-of-the-art approaches, in most cases. Finally, a thorough analysis of the performance of both SpMV and CG methods is performed, which allows us to model and estimate the expected maximum performance for a given (unseen) problem.


► We implemented a fast Sparse-Matrix Vector multiplication routine for GPUs.
► This implementation is used to accelerate the Conjugate Gradient or related methods.
► We developed a framework for estimating the performance of such algorithms.
► The estimated performances agree with the measured performances.
► This framework also gives proper estimations when two GPUs are used in parallel.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Parallel Computing - Volume 38, Issues 10–11, October–November 2012, Pages 552–575
نویسندگان
, ,