کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
524725 868851 2016 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transit signal priority accommodating conflicting requests under Connected Vehicles technology
ترجمه فارسی عنوان
اولویت سیگنال ترانزیتی با تطبیق درخواست های متعارض تحت تکنولوژی وسایل نقلیه متصل
کلمات کلیدی
اولویت سیگنال حمل و نقل شرطی؛ درخواست متعارض ؛ وسایل نقلیه متصل . تخصیص دوباره سبز؛ برنامه عدد صحیح خطی مخلوط باینری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• Potentially 100% bus accommodation rate.
• The logic is formulated as BMILP and is generalized to be applicable to various intersection geometries.
• Reduces bus delay up to 57%.
• No adverse effect was observed under all congestion levels considered.
• Potential real time applications.

In this research, a person-delay-based optimization method is proposed for an intelligent Transit Signal Priority (TSP) logic that resolves multiple conflicting TSP requests at an isolated intersection. This TSP with Connected Vehicles accommodating Conflicting Requests (TSPCV-CR) overcomes the challenge bore by the conventional “first come first serve” strategy and presents significant improvement on bus service performance. The feature of TSPCV-CR includes green time re-allocation, simultaneous multiple buses accommodation, and signal-transit coordination. These features help maximize the transit TSP service rate and minimize adverse effect on competing travel directions. The TSPCV-CR is also designed to be conditional. That is, TSP is granted only when the bus is behind schedule and the grant of TSP causes no extra total person delay. The optimization is formulated as a Binary Mixed Integer Linear Program (BMILP) which is solved by standard branch-and-bound routine. Minimizing per person delay is the objective of the optimization model.The logic developed in this research is evaluated using both analytical and microscopic traffic simulation approaches. Both analytical tests and simulation evaluations compared three scenarios: without TSP (NTSP), conventional TSP (CTSP), and TSP with Connected Vehicles that resolves Conflicting Requests (TSPCV-CR). The measures of effectiveness used include bus delay and total travel time of all travelers. The performance of TSPCV-CR is compared against conventional TSP (CTSP) under four congestion levels and three different conflicting scenarios. The results show that the TSPCV-CR greatly reduces bus delay at signalized intersection for all congestion levels and conflicting scenarios considered. Simulation based evaluation results show that the TSPCV-CR logic reduces average bus delay between 5% and 48% compared to the conventional TSP. The range of improvement corresponding to the four different v/c ratios tested, which are 0.5, 0.7, 0.9 and 1.0, respectively. No statistically significant negative effects are observed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part C: Emerging Technologies - Volume 69, August 2016, Pages 173–192
نویسندگان
, , ,