کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
529054 869627 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal-correlation-based reconstruction for distributed compressed video sensing
ترجمه فارسی عنوان
بازسازی مبتنی بر بهینه-همبستگی برای حسگر تصویربرداری فشرده توزیع شده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• We design a joint reconstruction algorithm for correlated video signals in the DCVS.
• We exploit the sparsity by means of inter-signal correlations.
• We use a two-phase Bregman based iterative algorithm.
• We provide a low-complexity video sampling paradigm without feedback channels.

Distributed compressed video sensing (DCVS) is a framework that integrates both compressed sensing and distributed video coding characteristics to achieve a low-complexity video coding. However, how to design an efficient joint reconstruction by leveraging more realistic signal models is still an open challenge. In this paper, we present a novel optimal-correlation-based reconstruction method for compressively sampled videos from multiple measurement vectors. In our method, the sparsity is mainly exploited through inter-signal correlations rather than the traditional frequency transform, wherein the optimization is not only over the signal space to satisfy data consistency but also over all possible linear correlation models to achieve minimum-l1-norm correlation noise. Additionally, a two-phase Bregman iterative based algorithm is outlined for solving the optimization problem. Simulation results show that our proposal can achieve an improved reconstruction performance in comparison to the conventional approaches, and especially, offer a 0.7–9.9 dB gain in the average PSNR for DCVS.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 31, August 2015, Pages 197–207
نویسندگان
, , , , ,