کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
529102 869631 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monte Carlo cluster refinement for noise robust image segmentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Monte Carlo cluster refinement for noise robust image segmentation
چکیده انگلیسی

This paper explores a stochastic approach to refining clustering results for data with spatial-feature context such as images under the presence of noise. We formulate the clustering problem as a maximum a posteriori (MAP) problem, and refine clustering results using importance-weighted Monte Carlo posterior estimates based on between-neighborhood error statistics to account for local spatial-feature context within a global framework. This cluster refinement approach is non-iterative and can be integrated with existing clustering methods to achieve improved clustering performance for image segmentation under high noise scenarios. Experiments on synthetic gray-level images, real-world natural images, and real-world satellite synthetic aperture radar imagery illustrate the proposed method’s potential for improving clustering performance of existing clustering algorithms for image segmentation under high noise situations.


► We explore a stochastic cluster refinement approach for image segmentation.
► We formulate the clustering problem as an maximum a posteriori (MAP) problem.
► We refine clustering using importance-weighted Monte Carlo posterior estimates.
► Experiments show improved clustering for image segmentation under high noise.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 23, Issue 7, October 2012, Pages 984–994
نویسندگان
, ,