کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
529934 869724 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse discriminative feature selection
ترجمه فارسی عنوان
انتخاب ویژگی های تبعیض آمیز است
کلمات کلیدی
انتخاب ویژگی مشترک، طبقه بندی نمایندگی انحصاری، یادگیری تبعیض آمیز
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• The proposed method selects features that can preserve the sparse reconstructive relationship of the data.
• A greedy algorithm and a joint selection algorithm are devised to efficiently solve the proposed formulation.
• We incorporate discriminative analysis and l2;1_norm minimization into a joint feature selection.

As sparse representation-based classifier (SRC) is developed, it has drawn more and more attentions in dimension reduction. In this paper, we introduce SRC based measurement criterion into feature selection, and then propose a novel method called sparse discriminative feature selection. Our objective function aims to find a subset of features, which minimize the within-class reconstruction residual and simultaneously maximize the between-class reconstruction residual in the subspace of selected features. A greedy algorithm and a joint selection algorithm are devised to efficiently solve the proposed combinatorial optimization formulation. In particular, our joint selection algorithm adds l2,1-norml2,1-norm minimization into the objective function, which reduces the redundant and learns features weights simultaneously. A new iterative algorithm is also developed to optimize the proposed objective function. Experiments on benchmark data sets demonstrate the performance of our feature selection method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 48, Issue 5, May 2015, Pages 1827–1835
نویسندگان
, ,