کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530130 869745 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Attribute-restricted latent topic model for person re-identification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Attribute-restricted latent topic model for person re-identification
چکیده انگلیسی

Searching for specific persons from surveillance videos captured by different cameras, known as person re-identification, is a key yet under-addressed challenge. Difficulties arise from the large variations of human appearance in different poses, and from the different camera views that may be involved, making low-level descriptor representation unreliable. In this paper, we propose a novel Attribute-Restricted Latent Topic Model (ARLTM) to encode targets into semantic topics. Compared to conventional topic models such as LDA and pLSI, ARLTM performs best by imposing semantic restrictions onto the generation of human specific attributes. We use MCMC EM for model learning. Experimental results show that our method achieves state-of-the-art performance.


► We present ARLTM which describes attributes distributions in a generative way.
► ARLTM bridges the gaps between human-specific attributes and topic model.
► We show the power of ARLTM for person re-identification in surveillance-based searching system.
► ARLTM is more suitable for person re-identification than existing supervised topic models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 45, Issue 12, December 2012, Pages 4204–4213
نویسندگان
, , , , , ,