کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530362 869761 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A kernel-based parametric method for conditional density estimation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A kernel-based parametric method for conditional density estimation
چکیده انگلیسی

A conditional density function, which describes the relationship between response and explanatory variables, plays an important role in many analysis problems. In this paper, we propose a new kernel-based parametric method to estimate conditional density. An exponential function is employed to approximate the unknown density, and its parameters are computed from the given explanatory variable via a nonlinear mapping using kernel principal component analysis (KPCA). We develop a new kernel function, which is a variant to polynomial kernels, to be used in KPCA. The proposed method is compared with the Nadaraya–Watson estimator through numerical simulation and practical data. Experimental results show that the proposed method outperforms the Nadaraya–Watson estimator in terms of revised mean integrated squared error (RMISE). Therefore, the proposed method is an effective method for estimating the conditional densities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 44, Issue 2, February 2011, Pages 284–294
نویسندگان
, , ,