کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530570 869776 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification
چکیده انگلیسی

Time series classification is a supervised learning problem aimed at labeling temporally structured multivariate sequences of variable length. The most common approach reduces time series classification to a static problem by suitably transforming the set of multivariate input sequences into a rectangular table composed by a fixed number of columns. Then, one of the alternative efficient methods for classification is applied for predicting the class of new temporal sequences. In this paper, we propose a new classification method, based on a temporal extension of discrete support vector machines, that benefits from the notions of warping distance and softened variable margin. Furthermore, in order to transform a temporal dataset into a rectangular shape, we also develop a new method based on fixed cardinality warping distances. Computational tests performed on both benchmark and real marketing temporal datasets indicate the effectiveness of the proposed method in comparison to other techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 43, Issue 11, November 2010, Pages 3787–3794
نویسندگان
, ,