کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530604 869779 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An extensive comparative study of cluster validity indices
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
An extensive comparative study of cluster validity indices
چکیده انگلیسی

The validation of the results obtained by clustering algorithms is a fundamental part of the clustering process. The most used approaches for cluster validation are based on internal cluster validity indices. Although many indices have been proposed, there is no recent extensive comparative study of their performance. In this paper we show the results of an experimental work that compares 30 cluster validity indices in many different environments with different characteristics. These results can serve as a guideline for selecting the most suitable index for each possible application and provide a deep insight into the performance differences between the currently available indices.


► We compare 30 cluster validity indices (CVIs) in 720 synthetic and 20 real datasets.
► We use a new comparison methodology and three clustering algorithms: k-means, Ward and Average-linkage.
► The CVI performance drops dramatically when noise is present or clusters overlap.
► Statistical tests suggest a division of three groups of CVIs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 46, Issue 1, January 2013, Pages 243–256
نویسندگان
, , , , ,