کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530634 869780 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semi-supervised clustering with metric learning: An adaptive kernel method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Semi-supervised clustering with metric learning: An adaptive kernel method
چکیده انگلیسی

Most existing representative works in semi-supervised clustering do not sufficiently solve the violation problem of pairwise constraints. On the other hand, traditional kernel methods for semi-supervised clustering not only face the problem of manually tuning the kernel parameters due to the fact that no sufficient supervision is provided, but also lack a measure that achieves better effectiveness of clustering. In this paper, we propose an adaptive Semi-supervised Clustering Kernel Method based on Metric learning (SCKMM) to mitigate the above problems. Specifically, we first construct an objective function from pairwise constraints to automatically estimate the parameter of the Gaussian kernel. Then, we use pairwise constraint-based K-means approach to solve the violation issue of constraints and to cluster the data. Furthermore, we introduce metric learning into nonlinear semi-supervised clustering to improve separability of the data for clustering. Finally, we perform clustering and metric learning simultaneously. Experimental results on a number of real-world data sets validate the effectiveness of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 43, Issue 4, April 2010, Pages 1320–1333
نویسندگان
, , , ,