کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530637 869780 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Probably correct k-nearest neighbor search in high dimensions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Probably correct k-nearest neighbor search in high dimensions
چکیده انگلیسی

A novel approach for k-nearest neighbor (k-NN) searching with Euclidean metric is described. It is well known that many sophisticated algorithms cannot beat the brute-force algorithm when the dimensionality is high. In this study, a probably correct approach, in which the correct set of k-nearest neighbors is obtained in high probability, is proposed for greatly reducing the searching time. We exploit the marginal distribution of the k th nearest neighbors in low dimensions, which is estimated from the stored data (an empirical percentile approach). We analyze the basic nature of the marginal distribution and show the advantage of the implemented algorithm, which is a probabilistic variant of the partial distance searching. Its query time is sublinear in data size n  , that is, O(mnδ)O(mnδ) with δ=o(1)δ=o(1) in n   and δ≤1δ≤1, for any fixed dimension m.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 43, Issue 4, April 2010, Pages 1361–1372
نویسندگان
, , ,