کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530653 869780 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effective segmentation and classification for HCC biopsy images
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Effective segmentation and classification for HCC biopsy images
چکیده انگلیسی

Accurate grading for hepatocellular carcinoma (HCC) biopsy images is important to prognosis and treatment planning. In this paper, we propose an automatic system for grading HCC biopsy images. In preprocessing, we use a dual morphological grayscale reconstruction method to remove noise and accentuate nuclear shapes. A marker-controlled watershed transform is applied to obtain the initial contours of nuclei and a snake model is used to segment the shapes of nuclei smoothly and precisely. Fourteen features are then extracted based on six types of characteristics for HCC classification. Finally, we propose a SVM-based decision-graph classifier to classify HCC biopsy images. Experimental results show that 94.54% of classification accuracy can be achieved by using our SVM-based decision-graph classifier while 90.07% and 92.88% of classification accuracy can be achieved by using k-NN and SVM classifiers, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 43, Issue 4, April 2010, Pages 1550–1563
نویسندگان
, ,