کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530675 869782 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fingerprint ridge orientation field reconstruction using the best quadratic approximation by orthogonal polynomials in two discrete variables
ترجمه فارسی عنوان
بازسازی فیلد جهت گیری ردیف اثر انگشت با استفاده از بهترین تقریب درجه دوم توسط چندجمله ای متعامد در دو متغیر گسسته
کلمات کلیدی
زمینه جهت گیری اثر انگشت، بازسازی جهت گیری اثر انگشت، تجزیه و تحلیل خطی خطی، پنجره کامپوزیت چندجملهایهای دوتایی گسسته
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• A novel method for fingerprint ridge orientation field reconstruction is proposed.
• The original orientation field is estimated using linear projection analysis.
• A solution to the existent problem of continuous orthogonal polynomials is proposed.
• 2D discrete orthogonal polynomials for orientation field reconstruction.
• The proposed method is more accurate and more robust against noise.

This paper proposes a novel algorithm for reconstructing the fingerprint orientation field (FOF). The basic idea of the algorithm is to reconstruct the ridge orientation by using the best quadratic approximation by orthogonal polynomials in two discrete variables. We first estimate the local region orientation by the linear projection analysis (LPA) based on the vector set of point gradients, and then reconstruct the ridge orientation field using the best quadratic approximation by orthogonal polynomials in two discrete variables in the sine domain. In this way, we solve the problem that is difficult to accurately extract low quality fingerprint image orientation fields. The experiments with the database of FVC 2004 show that, compared to the state-of-the-art fingerprint orientation estimation algorithms, the proposed method is more accurate and more robust against noise, and is able to better estimate the FOF of low quality fingerprint images with large areas of noise.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 47, Issue 10, October 2014, Pages 3304–3313
نویسندگان
, , , ,