کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530687 869782 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Visual query expansion with or without geometry: Refining local descriptors by feature aggregation
ترجمه فارسی عنوان
گسترش پرس و جو پرس و جو با یا بدون هندسه: تکثیر توصیف های محلی توسط تجمع ویژگی
کلمات کلیدی
بازیابی تصویر، گسترش پرس و جو، تعویض هامم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Novel query expansion method aligned with Hamming Embedding which individually matches features.
• Refinement of local description instead of global one in the previous query expansion methods.
• Descriptor aggregation providing more compact and more robust local representation.
• No need for spatial matching to identify good candidates for query expansion.

This paper proposes a query expansion technique for image search that is faster and more precise than the existing ones. An enriched representation of the query is obtained by exploiting the binary representation offered by the Hamming Embedding image matching approach: the initial local descriptors are refined by aggregating those of the database, while new descriptors are produced from the images that are deemed relevant.The technique has two computational advantages over other query expansion techniques. First, the size of the enriched representation is comparable to that of the initial query. Second, the technique is effective even without using any geometry, in which case searching a database comprising 105k images typically takes 79 ms on a desktop machine. Overall, our technique significantly outperforms the visual query expansion state of the art on popular benchmarks. It is also the first query expansion technique shown effective on the UKB benchmark, which has few relevant images per query.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 47, Issue 10, October 2014, Pages 3466–3476
نویسندگان
, ,