کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
530878 | 869797 | 2007 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pairwise fusion matrix for combining classifiers
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Various fusion functions for classifier combination have been designed to optimize the results of ensembles of classifiers (EoC). We propose a pairwise fusion matrix (PFM) transformation, which produces reliable probabilities for the use of classifier combination and can be amalgamated with most existent fusion functions for combining classifiers. The PFM requires only crisp class label outputs from classifiers, and is suitable for high-class problems or problems with few training samples. Experimental results suggest that the performance of a PFM can be a notch above that of the simple majority voting rule (MAJ), and a PFM can work on problems where a behavior–knowledge space (BKS) might not be applicable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 40, Issue 8, August 2007, Pages 2198–2210
Journal: Pattern Recognition - Volume 40, Issue 8, August 2007, Pages 2198–2210
نویسندگان
Albert H.R. Ko, Robert Sabourin, Alceu de Souza Britto Jr., Luiz Oliveira,