کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530941 869802 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized mean for feature extraction in one-class classification problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Generalized mean for feature extraction in one-class classification problems
چکیده انگلیسی


• Generalized mean is used for BDA in place of arithmetic mean.
• The proposed method is more robust to outliers than the other alternative methods.
• We also propose a novel method to efficiently maximize the generalized mean.

Biased discriminant analysis (BDA), which extracts discriminative features for one-class classification problems, is sensitive to outliers in negative samples. This study focuses on the drawback of BDA attributed to the objective function based on the arithmetic mean in one-class classification problems, and proposes an objective function based on a generalized mean. A novel method is also presented to effectively maximize the objective function. The experimental results show that the proposed method provides better discriminative features than the BDA and its variants.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 46, Issue 12, December 2013, Pages 3328–3340
نویسندگان
, , , ,