کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
531042 | 869807 | 2010 | 10 صفحه PDF | دانلود رایگان |

In this paper, we present a methodology for off-line handwritten character recognition. The proposed methodology relies on a new feature extraction technique based on recursive subdivisions of the character image so that the resulting sub-images at each iteration have balanced (approximately equal) numbers of foreground pixels, as far as this is possible. Feature extraction is followed by a two-stage classification scheme based on the level of granularity of the feature extraction method. Classes with high values in the confusion matrix are merged at a certain level and for each group of merged classes, granularity features from the level that best distinguishes them are employed. Two handwritten character databases (CEDAR and CIL) as well as two handwritten digit databases (MNIST and CEDAR) were used in order to demonstrate the effectiveness of the proposed technique. The recognition result achieved, in comparison to the ones reported in the literature, is the highest for the well-known CEDAR Character Database (94.73%) and among the best for the MNIST Database (99.03%)
Journal: Pattern Recognition - Volume 43, Issue 8, August 2010, Pages 2807–2816