کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
531056 | 869807 | 2010 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Generalized iterative RELIEF for supervised distance metric learning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The RELIEF algorithm is a popular approach for feature weighting. Many extensions of the RELIEF algorithm are developed, and I-RELIEF is one of the famous extensions. In this paper, I-RELIEF is generalized for supervised distance metric learning to yield a Mahananobis distance function. The proposed approach is justified by showing that the objective function of the generalized I-RELIEF is closely related to the expected leave-one-out nearest-neighbor classification rate. In addition, the relationships among the generalized I-RELIEF, the neighbourhood components analysis, and graph embedding are also pointed out. Experimental results on various data sets all demonstrate the superiority of the proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 43, Issue 8, August 2010, Pages 2971–2981
Journal: Pattern Recognition - Volume 43, Issue 8, August 2010, Pages 2971–2981
نویسندگان
Chin-Chun Chang,