کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531056 869807 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized iterative RELIEF for supervised distance metric learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Generalized iterative RELIEF for supervised distance metric learning
چکیده انگلیسی

The RELIEF algorithm is a popular approach for feature weighting. Many extensions of the RELIEF algorithm are developed, and I-RELIEF is one of the famous extensions. In this paper, I-RELIEF is generalized for supervised distance metric learning to yield a Mahananobis distance function. The proposed approach is justified by showing that the objective function of the generalized I-RELIEF is closely related to the expected leave-one-out nearest-neighbor classification rate. In addition, the relationships among the generalized I-RELIEF, the neighbourhood components analysis, and graph embedding are also pointed out. Experimental results on various data sets all demonstrate the superiority of the proposed approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 43, Issue 8, August 2010, Pages 2971–2981
نویسندگان
,