کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531349 869832 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automatic analysis of 3D low dose CT images for early diagnosis of lung cancer
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Automatic analysis of 3D low dose CT images for early diagnosis of lung cancer
چکیده انگلیسی

Our long term research goal is to develop a fully automated, image-based diagnostic system for early diagnosis of pulmonary nodules that may lead to lung cancer. This paper focuses on monitoring the development of lung nodules detected in successive chest low dose (LD) CT scans of a patient. We propose a new methodology for 3D LDCT data registration which is non-rigid and involves two steps: (i) global target-to-prototype alignment of one scan to another using the learned prior appearance model followed by (ii) local alignment in order to correct for intricate relative deformations. After equalizing signals for two subsequent chest scans, visual appearance of these chest images is described using a Markov–Gibbs random field (MGRF) model with multiple pairwise interaction. An affine transformation that globally registers a target to a prototype is estimated by the gradient ascent-based maximization of a special Gibbs energy function. To get an accurate visual appearance model, we developed a new approach to automatic selection of most characteristic second-order cliques that describe pairwise interactions in the LDCT data. To handle local deformations, we displace each voxel of the target over evolving closed equi-spaced surfaces (iso-surfaces) to closely match the prototype. The evolution of the iso-surfaces is guided by a speed function in the directions that minimize distances between the corresponding voxel pairs on the iso-surfaces in both the data sets. Preliminary results on the 135 LDCT data sets from 27 patients show that the proposed accurate registration could lead to precise diagnosis and identification of the development of the detected pulmonary nodules.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 6, June 2009, Pages 1041–1051
نویسندگان
, , , ,