کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
531363 | 869832 | 2009 | 12 صفحه PDF | دانلود رایگان |

In this paper, we show that zoom-endoscopy images can be well classified according to the pit-pattern classification scheme by using texture-analysis methods in different wavelet domains. We base our approach on three different variants of the wavelet transform and propose that the color channels of the RGB and LAB color model are an important source for computing image features with high discriminative power. Color-channel information is incorporated by either using simple feature vector concatenation and cross-cooccurrence matrices in the wavelet domain. Our experimental results based on k-nearest neighbor classification and forward feature selection exemplify the advantages of the different wavelet transforms and show that color-image analysis is superior to grayscale-image analysis regarding our medical image classification problem.
Journal: Pattern Recognition - Volume 42, Issue 6, June 2009, Pages 1180–1191