کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531405 869838 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lyndon ++ Christoffel == digitally convex
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Lyndon ++ Christoffel == digitally convex
چکیده انگلیسی

Discrete geometry redefines notions borrowed from Euclidean geometry creating a need for new algorithmical tools. The notion of convexity does not translate trivially, and detecting if a discrete region of the plane is convex requires a deeper analysis. To the many different approaches of digital convexity, we propose the combinatorics on words point of view, unnoticed until recently in the pattern recognition community. In this paper, we provide first a fast optimal algorithm checking digital convexity of polyominoes coded by their contour word. The result is based on linear time algorithms for both computing the Lyndon factorization of the contour word and the recognition of Christoffel factors that are approximations of digital lines. By avoiding arithmetical computations the algorithm is much simpler to implement and much faster in practice. We also consider the convex hull computation and relate previous work in combinatorics on words with the classical Melkman algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 10, October 2009, Pages 2239–2246
نویسندگان
, , , ,