کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531469 869844 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tensor linear Laplacian discrimination (TLLD) for feature extraction
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Tensor linear Laplacian discrimination (TLLD) for feature extraction
چکیده انگلیسی

Discriminant feature extraction plays a central role in pattern recognition and classification. In this paper, we propose the tensor linear Laplacian discrimination (TLLD) algorithm for extracting discriminant features from tensor data. TLLD is an extension of linear discriminant analysis (LDA) and linear Laplacian discrimination (LLD) in directions of both nonlinear subspace learning and tensor representation. Based on the contextual distance, the weights for the within-class scatters and the between-class scatter can be determined to capture the principal structure of data clusters. This makes TLLD free from the metric of the sample space, which may not be known. Moreover, unlike LLD, the parameter tuning of TLLD is very easy. Experimental results on face recognition, texture classification and handwritten digit recognition show that TLLD is effective in extracting discriminative features.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 9, September 2009, Pages 1941–1948
نویسندگان
, , ,