کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
531507 | 869848 | 2009 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Domain density description for multiclass pattern classification with reduced computational load
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We propose a novel classification method that can reduce the computational cost of training and testing for multiclass problems. The proposed method uses the distance in feature space between a test sample and high-density region or domain that can be described by support vector learning. The proposed method shows faster training speed and has ability to represent the nonlinearity of data structure using a smaller percentage of available data sample than the existing methods for multiclass problems. To demonstrate the potential usefulness of the proposed approach, we evaluate the performance about artificial and actual data. Experimental results show that the proposed method has better accuracy and efficiency than the existing methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 41, Issue 6, June 2008, Pages 1997–2009
Journal: Pattern Recognition - Volume 41, Issue 6, June 2008, Pages 1997–2009
نویسندگان
Woo-Sung Kang, Jin Young Choi,