کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531728 869870 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Clustering and aggregation of relational data with applications to image database categorization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Clustering and aggregation of relational data with applications to image database categorization
چکیده انگلیسی

In this paper, we introduce a new algorithm for clustering and aggregating relational data (CARD). We assume that data is available in a relational form, where we only have information about the degrees to which pairs of objects in the data set are related. Moreover, we assume that the relational information is represented by multiple dissimilarity matrices. These matrices could have been generated using different sensors, features, or mappings. CARD is designed to aggregate pairwise distances from multiple relational matrices, partition the data into clusters, and learn a relevance weight for each matrix in each cluster simultaneously. The cluster dependent relevance weights offer two advantages. First, they guide the clustering process to partition the data set into more meaningful clusters. Second, they can be used in subsequent steps of a learning system to improve its learning behavior. The performance of the proposed algorithm is illustrated by using it to categorize a collection of 500 color images. We represent the pairwise image dissimilarities by six different relational matrices that encode color, texture, and structure information.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 40, Issue 11, November 2007, Pages 3053–3068
نویسندگان
, , ,