کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
531751 | 869875 | 2007 | 19 صفحه PDF | دانلود رایگان |

A new multi-layer self-organizing map (MLSOM) is proposed for unsupervised processing tree-structured data. The MLSOM is an improved self-organizing map for handling structured data. By introducing multiple SOM layers, the MLSOM can overcome the computational speed and visualization problems of SOM for structured data (SOM-SD). Node data in different levels of a tree are processed in different layers of the MLSOM. Root nodes are dedicatedly processed on the top SOM layer enabling the MLSOM a better utilization of SOM map compared with the SOM-SD. Thus, the MLSOM exhibits better data organization, clustering, visualization, and classification results of tree-structured data. Experimental results on three different data sets demonstrate that the proposed MLSOM approach can be more efficient and effective than the SOM-SD.
Journal: Pattern Recognition - Volume 40, Issue 5, May 2007, Pages 1406–1424