کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
531923 | 869887 | 2009 | 14 صفحه PDF | دانلود رایگان |

Pixel-based texture classifiers and segmenters are typically based on the combination of texture feature extraction methods that belong to a single family (e.g., Gabor filters). However, combining texture methods from different families has proven to produce better classification results both quantitatively and qualitatively. Given a set of multiple texture feature extraction methods from different families, this paper presents a new texture feature selection scheme that automatically determines a reduced subset of methods whose integration produces classification results comparable to those obtained when all the available methods are integrated, but with a significantly lower computational cost. Experiments with both Brodatz and real outdoor images show that the proposed selection scheme is more advantageous than well-known general purpose feature selection algorithms applied to the same problem.
Journal: Pattern Recognition - Volume 39, Issue 11, November 2006, Pages 1996–2009