کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531946 869887 2006 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fuzzy discriminant analysis with kernel methods
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Fuzzy discriminant analysis with kernel methods
چکیده انگلیسی

A novel fuzzy nonlinear classifier, called kernel fuzzy discriminant analysis (KFDA), is proposed to deal with linear non-separable problem. With kernel methods KFDA can perform efficient classification in kernel feature space. Through some nonlinear mapping the input data can be mapped implicitly into a high-dimensional kernel feature space where nonlinear pattern now appears linear. Different from fuzzy discriminant analysis (FDA) which is based on Euclidean distance, KFDA uses kernel-induced distance. Theoretical analysis and experimental results show that the proposed classifier compares favorably with FDA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 39, Issue 11, November 2006, Pages 2236–2239
نویسندگان
, ,