کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531985 869892 2006 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature representation and discrimination based on Gaussian mixture model probability densities—Practices and algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Feature representation and discrimination based on Gaussian mixture model probability densities—Practices and algorithms
چکیده انگلیسی

This study promotes the use of statistical methods in specific classification tasks since statistical methods have certain advantages which advocate their use in pattern recognition. One central problem in statistical methods is estimation of class conditional probability density functions based on examples in a training set. In this study maximum likelihood estimation methods for Gaussian mixture models are reviewed and discussed from a practical point of view. In addition, good practices for utilizing probability densities in feature classification and selection are discussed for Bayesian and, more importantly, for non-Bayesian tasks. As a result, the use of confidence information in the classification is proposed and a method for confidence estimation is presented. The propositions are tested experimentally.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 39, Issue 7, July 2006, Pages 1346–1358
نویسندگان
, , , ,