کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532348 869940 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A reservoir-driven non-stationary hidden Markov model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A reservoir-driven non-stationary hidden Markov model
چکیده انگلیسی

In this work, we propose a novel approach towards sequential data modeling that leverages the strengths of hidden Markov models and echo-state networks (ESNs) in the context of non-parametric Bayesian inference approaches. We introduce a non-stationary hidden Markov model, the time-dependent state transition probabilities of which are driven by a high-dimensional signal that encodes the whole history of the modeled observations, namely the state vector of a postulated observations-driven ESN reservoir. We derive an efficient inference algorithm for our model under the variational Bayesian paradigm, and we examine the efficacy of our approach considering a number of sequential data modeling applications.


► We present a non-stationary non-parametric Bayesian HMM.
► Non-stationary state transition probabilities are obtained through a proper probabilistic model of the input history.
► For this purpose, an echo state-network reservoir is employed.
► We evaluate our method in human motion modeling.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 45, Issue 11, November 2012, Pages 3985–3996
نویسندگان
, ,