کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532418 869947 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving constrained clustering with active query selection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Improving constrained clustering with active query selection
چکیده انگلیسی

In this article, we address the problem of automatic constraint selection to improve the performance of constraint-based clustering algorithms. To this aim we propose a novel active learning algorithm that relies on a k-nearest neighbors graph and a new constraint utility function to generate queries to the human expert. This mechanism is paired with propagation and refinement processes that limit the number of constraint candidates and introduce a minimal diversity in the proposed constraints. Existing constraint selection heuristics are based on a random selection or on a min–max criterion and thus are either inefficient or more adapted to spherical clusters. Contrary to these approaches, our method is designed to be beneficial for all constraint-based clustering algorithms. Comparative experiments conducted on real datasets and with two distinct representative constraint-based clustering algorithms show that our approach significantly improves clustering quality while minimizing the number of human expert solicitations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 45, Issue 4, April 2012, Pages 1749–1758
نویسندگان
, , ,