کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532428 869952 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel multiset integrated canonical correlation analysis framework and its application in feature fusion
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A novel multiset integrated canonical correlation analysis framework and its application in feature fusion
چکیده انگلیسی

Multiset canonical correlation analysis (MCCA) is difficult to effectively express the integrated correlation among multiple feature vectors in feature fusion. Thus, this paper firstly presents a novel multiset integrated canonical correlation analysis (MICCA) framework. The MICCA establishes a discriminant correlation criterion function of multi-group variables based on generalized correlation coefficient. The criterion function can clearly depict the integrated correlation among multiple feature vectors. Then the paper presents a multiple feature fusion theory and algorithm using the MICCA method. The detailed process of the algorithm is as follows: firstly, extract multiple feature vectors from the same patterns by using different feature extraction methods; then extract multiset integrated canonical correlation features using MICCA; finally form effective discriminant feature vectors through two given feature fusion strategies for pattern classification. The multi-group feature fusion method based on MICCA not only achieves the aim of feature fusion, but also removes the redundancy between features. The experiment results on CENPARMI handwritten Arabic numerals and UCI multiple features database show that the MICCA method has better recognition rates and robustness than the fusion methods based on canonical correlation analysis (CCA) and MCCA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 44, Issue 5, May 2011, Pages 1031–1040
نویسندگان
, , , ,