کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
532431 | 869952 | 2011 | 11 صفحه PDF | دانلود رایگان |

Graphs are a powerful and popular representation formalism in pattern recognition. Particularly in the field of document analysis they have found widespread application. From the formal point of view, however, graphs are quite limited in the sense that the majority of mathematical operations needed to build common algorithms, such as classifiers or clustering schemes, are not defined. Consequently, we observe a severe lack of algorithmic procedures that can directly be applied to graphs. There exists recent work, however, aimed at overcoming these limitations. The present paper first provides a review of the use of graph representations in document analysis. Then we discuss a number of novel approaches suitable for making tools from statistical pattern recognition available to graphs. These novel approaches include graph kernels and graph embedding. With several experiments, using different data sets from the field of document analysis, we show that the new methods have great potential to outperform traditional procedures applied to graph representations.
Journal: Pattern Recognition - Volume 44, Issue 5, May 2011, Pages 1057–1067