کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
532652 | 869977 | 2009 | 11 صفحه PDF | دانلود رایگان |

Example-based super-resolution is a promising approach to solving the image super-resolution problem. However, the learning process can be slow and prediction can be inaccurate. In this paper, we present a novel learning-based algorithm for image super-resolution to improve the computational speed and prediction accuracy. Our new method classifies image patches into several classes, for each class, a class-specific predictor is designed. A class-specific predictor takes a low-resolution image patch as input and predicts a corresponding high-resolution patch as output. The performances of the class-specific predictors are evaluated using different datasets formed by face images and natural-scene images. We present experimental results which demonstrate that the new method provides improved performances over existing methods.
Journal: Journal of Visual Communication and Image Representation - Volume 20, Issue 5, July 2009, Pages 312–322