کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532748 869989 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Soft memberships for spectral clustering, with application to permeable language distinction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Soft memberships for spectral clustering, with application to permeable language distinction
چکیده انگلیسی

Recently, a large amount of work has been devoted to the study of spectral clustering—a powerful unsupervised classification method. This paper brings contributions to both its foundations, and its applications to text classification. Departing from the mainstream, concerned with hard membership, we study the extension of spectral clustering to soft membership (probabilistic, EM style) assignments. One of its key features is to avoid the complexity gap of hard membership. We apply this theory to a challenging problem, text clustering for languages having permeable borders, via a novel construction of Markov chains from corpora. Experiments with a readily available code clearly display the potential of the method, which brings a visually appealing soft distinction of languages that may define altogether a whole corpus.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 1, January 2009, Pages 43–53
نویسندگان
, , , ,