کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
532838 | 870002 | 2007 | 10 صفحه PDF | دانلود رایگان |

In this paper, we propose a novel uncorrelated, weighted linear discriminant analysis (UWLDA) method for feature extraction and recognition. The UWLDA first introduces a weighting function to restrain the dominant role of the classes with larger distance and then searches the optimal discriminant vectors under the conjugative orthogonal constrains in the null space of the within-class scatter matrix and its conjugative orthogonal complement space, respectively. As a result, the proposed technique not only derive the optimal and lossless discriminative information, but also guarantee that all extracted features are statistically uncorrelated. Experiments on FERET face database and AR face database are performed to test and evaluate the proposed algorithm. The results demonstrate the effectiveness of UWLDA.
Journal: Pattern Recognition - Volume 40, Issue 12, December 2007, Pages 3606–3615