کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532840 870002 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A robust incremental learning framework for accurate skin region segmentation in color images
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A robust incremental learning framework for accurate skin region segmentation in color images
چکیده انگلیسی

In this paper, we propose a robust incremental learning framework for accurate skin region segmentation in real-life images. The proposed framework is able to automatically learn the skin color information from each test image in real-time and generate the specific skin model (SSM) for that image. Consequently, the SSM can adapt to a certain image, in which the skin colors may vary from one region to another due to illumination conditions and inherent skin colors. The proposed framework consists of multiple iterations to learn the SSM, and each iteration comprises two major steps: (1) collecting new skin samples by region growing; (2) updating the skin model incrementally with the available skin samples. After the skin model converges (i.e., becomes the SSM), a post-processing can be further performed to fill up the interstices on the skin map. We performed a set of experiments on a large-scale real-life image database and our method observably outperformed the well-known Bayesian histogram. The experimental results confirm that the SSM is more robust than static skin models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 40, Issue 12, December 2007, Pages 3621–3632
نویسندگان
, , ,