کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532849 870002 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
EROS: Ensemble rough subspaces
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
EROS: Ensemble rough subspaces
چکیده انگلیسی

Ensemble learning is attracting much attention from pattern recognition and machine learning domains for good generalization. Both theoretical and experimental researches show that combining a set of accurate and diverse classifiers will lead to a powerful classification system. An algorithm, called FS-PP-EROS, for selective ensemble of rough subspaces is proposed in this paper. Rough set-based attribute reduction is introduced to generate a set of reducts, and then each reduct is used to train a base classifier. We introduce an accuracy-guided forward search and post-pruning strategy to select part of the base classifiers for constructing an efficient and effective ensemble system. The experiments show that classification accuracies of ensemble systems with accuracy-guided forward search strategy will increase at first, arrive at a maximal value, then decrease in sequentially adding the base classifiers. We delete the base classifiers added after the maximal accuracy. The experimental results show that the proposed ensemble systems outperform bagging and random subspace methods in terms of accuracy and size of ensemble systems. FS-PP-EROS can keep or improve the classification accuracy with very few base classifiers, which leads to a powerful and compact classification system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 40, Issue 12, December 2007, Pages 3728–3739
نویسندگان
, , , ,