کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532914 870017 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces
چکیده انگلیسی

Prototype-based classification relies on the distances between the examples to be classified and carefully chosen prototypes. A small set of prototypes is of interest to keep the computational complexity low, while maintaining high classification accuracy. An experimental study of some old and new prototype optimisation techniques is presented, in which the prototypes are either selected or generated from the given data. These condensing techniques are evaluated on real data, represented in vector spaces, by comparing their resulting reduction rates and classification performance.Usually the determination of prototypes is studied in relation with the nearest neighbour rule. We will show that the use of more general dissimilarity-based classifiers can be more beneficial. An important point in our study is that the adaptive condensing schemes here discussed allow the user to choose the number of prototypes freely according to the needs. If such techniques are combined with linear dissimilarity-based classifiers, they provide the best trade-off of small condensed sets and high classification accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 39, Issue 10, October 2006, Pages 1827–1838
نویسندگان
, , , , , ,