کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532973 870032 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ensemble learning for independent component analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Ensemble learning for independent component analysis
چکیده انگلیسی

It is well known that the applicability of independent component analysis (ICA) to high-dimensional pattern recognition tasks such as face recognition often suffers from two problems. One is the small sample size problem. The other is the choice of basis functions (or independent components). Both problems make ICA classifier unstable and biased. In this paper, we propose an enhanced ICA algorithm by ensemble learning approach, named as random independent subspace (RIS), to deal with the two problems. Firstly, we use the random resampling technique to generate some low dimensional feature subspaces, and one classifier is constructed in each feature subspace. Then these classifiers are combined into an ensemble classifier using a final decision rule. Extensive experimentations performed on the FERET database suggest that the proposed method can improve the performance of ICA classifier.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 39, Issue 1, January 2006, Pages 81–88
نویسندگان
, , , ,