کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532985 870037 2005 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Coarse iris classification using box-counting to estimate fractal dimensions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Coarse iris classification using box-counting to estimate fractal dimensions
چکیده انگلیسی

This paper proposes a novel algorithm for the automatic coarse classification of iris images using a box-counting method to estimate the fractal dimensions of the iris. First, the iris image is segmented into sixteen blocks, eight belonging to an upper group and eight to a lower group. We then calculate the fractal dimension value of these image blocks and take the mean value of the fractal dimension as the upper and the lower group fractal dimensions. Finally, all the iris images are classified into four categories in accordance with the upper and the lower group fractal dimensions. This classification method has been tested and evaluated on 872 iris cases, and the proportions of these categories in our database are 5.50%, 38.54%, 21.79%, and 34.17%. The iris images are classified with two algorithms, the double threshold algorithm, which classifies iris images with an accuracy of 94.61%, and the backpropagation algorithm, which is 93.23% accurate. When we allow for the border effect, the double threshold algorithm is 98.28% accurate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 38, Issue 11, November 2005, Pages 1791–1798
نویسندگان
, , , ,