کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533262 870092 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse representation for robust abnormality detection in crowded scenes
ترجمه فارسی عنوان
نمایندگی انعطاف پذیر برای تشخیص ناهنجاری های شدید در صحنه های شلوغ
کلمات کلیدی
فاکتورسازی ماتریس غیر انتزاعی، صحنه فراگیر تشخیص اختلال، برنامه نویسی انعطاف پذیر، فاصله زمین حرکت دهنده، موج الکترومغناطیسی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• A non-negative sparse coding based approach for abnormality event detection in crowded scenes is proposed.
• Dictionary learning is formulated as a non-negative matrix factorization problem.
• EMD is selected as distance metric to cope with feature noisy and uncertainty.
• Wavelet EMD is introduced to reduce computation and guarantee the convexity of optimization.

In crowded scenes, the extracted low-level features, such as optical flow or spatio-temporal interest point, are inevitably noisy and uncertainty. In this paper, we propose a fully unsupervised non-negative sparse coding based approach for abnormality event detection in crowded scenes, which is specifically tailored to cope with feature noisy and uncertainty. The abnormality of query sample is decided by the sparse reconstruction cost from an atomically learned event dictionary, which forms a sparse coding bases. In our algorithm, we formulate the task of dictionary learning as a non-negative matrix factorization (NMF) problem with a sparsity constraint. We take the robust Earth Mover's Distance (EMD), instead of traditional Euclidean distance, as distance metric reconstruction cost function. To reduce the computation complexity of EMD, an approximate EMD, namely wavelet EMD, is introduced and well combined into our approach, without losing performance. In addition, the combination of wavelet EMD with our approach guarantees the convexity of optimization in dictionary learning. To handle both local abnormality detection (LAD) and global abnormality detection, we adopt two different types of spatio-temporal basis. Experiments conducted on four public available datasets demonstrate the promising performance of our work against the state-of-the-art methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 47, Issue 5, May 2014, Pages 1791–1799
نویسندگان
, , , , ,