کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533272 870092 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimum-risk training for semi-Markov conditional random fields with application to handwritten Chinese/Japanese text recognition
ترجمه فارسی عنوان
آموزش حداقل ریسک برای زمینه های تصادفی شرطی نیمه مارکوف با استفاده از زبان انگلیس به زبان چینی / ژاپنی
کلمات کلیدی
زمینه های تصادفی شرطی نیمه مارکوف، آموزش حداقل ریسک، شناسایی رشته شخصیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• We present a minimum-risk (MR) training method for semi-CRFs.
• MR aims at minimizing the character error rate rather than the string error rate.
• Three non-0/1 cost functions are compared with the conventional 0/1 cost.
• Lattice edge selection is investigated in MR to reduce the training complexity.
• Six learning criteria are evaluated on handwritten Chinese text recognition tasks.

Semi-Markov conditional random fields (semi-CRFs) are usually trained with maximum a posteriori (MAP) criterion which adopts the 0/1 cost for measuring the loss of misclassification. In this paper, based on our previous work on handwritten Chinese/Japanese text recognition (HCTR) using semi-CRFs, we propose an alternative parameter learning method by minimizing the risk on the training set, which has unequal misclassification costs depending on the hypothesis and the ground-truth. Based on this framework, three non-uniform cost functions are compared with the conventional 0/1 cost, and training data selection is incorporated to reduce the computational complexity. In experiments of online handwriting recognition on databases CASIA-OLHWDB and TUAT Kondate, we compared the performances of the proposed method with several widely used learning criteria, including conditional log-likelihood (CLL), softmax-margin (SMM), minimum classification error (MCE), large-margin MCE (LM-MCE) and max-margin (MM). On the test set (online handwritten texts) of ICDAR 2011 Chinese handwriting recognition competition, the proposed method outperforms the best system in competition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 47, Issue 5, May 2014, Pages 1904–1916
نویسندگان
, , , , ,