کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533417 870113 2012 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A boosting approach for supervised Mahalanobis distance metric learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A boosting approach for supervised Mahalanobis distance metric learning
چکیده انگلیسی

Determining a proper distance metric is often a crucial step for machine learning. In this paper, a boosting algorithm is proposed to learn a Mahalanobis distance metric. Similar to most boosting algorithms, the proposed algorithm improves a loss function iteratively. In particular, the loss function is defined in terms of hypothesis margins, and a metric matrix base-learner specific to the boosting framework is also proposed. Experimental results show that the proposed approach can yield effective Mahalanobis distance metrics for a variety of data sets, and demonstrate the feasibility of the proposed approach.


► We propose a boosting algorithm to learn a Mahalanobis distance metric.
► The proposed algorithm has good convergency property.
► The proposed approach provides a unified view of some existing approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 45, Issue 2, February 2012, Pages 844–862
نویسندگان
,