کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533419 870113 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multilabel classifiers with a probabilistic thresholding strategy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Multilabel classifiers with a probabilistic thresholding strategy
چکیده انگلیسی

In multilabel classification tasks the aim is to find hypotheses able to predict, for each instance, a set of classes or labels rather than a single one. Some state-of-the-art multilabel learners use a thresholding strategy, which consists in computing a score for each label and then predicting the set of labels whose score is higher than a given threshold. When this score is the estimated posterior probability, the selected threshold is typically 0.5.In this paper we introduce a family of thresholding strategies which take into account the posterior probability of all possible labels to determine a different threshold for each instance. Thus, we exploit some kind of interdependence among labels to compute this threshold, which is optimal regarding a given expected loss function. We found experimentally that these strategies outperform other thresholding options for multilabel classification. They provide an efficient method to implement a learner which considers the interdependence among labels in the sense that the overall performance of the prediction of a set of labels prevails over that of each single label.


► We deal with multilabel classification tasks.
► Our approach is an improvement of thresholding strategies.
► From the label's posterior probability we find the optimum threshold to predict labels.
► We optimize the expected loss for some loss functions, like F1, Accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 45, Issue 2, February 2012, Pages 876–883
نویسندگان
, , ,