کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533488 870124 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semi-supervised Elastic net for pedestrian counting
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Semi-supervised Elastic net for pedestrian counting
چکیده انگلیسی

Pedestrian counting plays an important role in public safety and intelligent transportation. Most pedestrian counting algorithms based on supervised learning require much labeling work and rarely exploit the topological information of unlabelled data in a video. In this paper, we propose a Semi-Supervised Elastic Net (SSEN) regression method by utilizing sequential information between unlabelled samples and their temporally neighboring samples as a regularization term. Compared with a state-of-the-art algorithm, extensive experiments indicate that our algorithm can not only select sparse representative features from the original feature space without losing their interpretability, but also attain superior prediction performance with only very few labelled frames.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 44, Issues 10–11, October–November 2011, Pages 2297–2304
نویسندگان
, , ,