کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533513 870124 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regression based automatic face annotation for deformable model building
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Regression based automatic face annotation for deformable model building
چکیده انگلیسی

A major drawback of statistical models of non-rigid, deformable objects, such as the active appearance model (AAM), is the required pseudo-dense annotation of landmark points for every training image. We propose a regression-based approach for automatic annotation of face images at arbitrary pose and expression, and for deformable model building using only the annotated frontal images. We pose the problem of learning the pattern of manual annotation as a data-driven regression problem and explore several regression strategies to effectively predict the spatial arrangement of the landmark points for unseen face images, with arbitrary expression, at arbitrary poses. We show that the proposed fully sparse non-linear regression approach outperforms other regression strategies by effectively modelling the changes in the shape of the face under varying pose and is capable of capturing the subtleties of different facial expressions at the same time, thus, ensuring the high quality of the generated synthetic images. We show the generalisability of the proposed approach by automatically annotating the face images from four different databases and verifying the results by comparing them with a ground truth obtained from manual annotations.


► Novel regression-based approach to generate synthetic face images at desired poses.
► Explored several regression strategies to achieve best possible synthesis.
► Synthetic images are used to train synthetic 2D and 3D face models automatically.
► Synthetic models are used to annotate various unseen face databases automatically.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 44, Issues 10–11, October–November 2011, Pages 2598–2613
نویسندگان
, , ,