کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533545 870128 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fuzzy C-means based clustering for linearly and nonlinearly separable data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Fuzzy C-means based clustering for linearly and nonlinearly separable data
چکیده انگلیسی

In this paper we present a new distance metric that incorporates the distance variation in a cluster to regularize the distance between a data point and the cluster centroid. It is then applied to the conventional fuzzy C-means (FCM) clustering in data space and the kernel fuzzy C-means (KFCM) clustering in a high-dimensional feature space. Experiments on two-dimensional artificial data sets, real data sets from public data libraries and color image segmentation have shown that the proposed FCM and KFCM with the new distance metric generally have better performance on non-spherically distributed data with uneven density for linear and nonlinear separation.

Research highlights
► A new distance metric based on distance variation is used to improve FCM clustering.
► The new distance metric can also be applied to kernel FCM for various data shapes.
► The proposed algorithms can be used for linearly and nonlinearly separable data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 44, Issue 8, August 2011, Pages 1750–1760
نویسندگان
, ,