کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533579 870138 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A naive relevance feedback model for content-based image retrieval using multiple similarity measures
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A naive relevance feedback model for content-based image retrieval using multiple similarity measures
چکیده انگلیسی

This paper presents a novel probabilistic framework to process multiple sample queries in content based image retrieval (CBIR). This framework is independent from the underlying distance or (dis)similarity measures which support the retrieval system, and only assumes mutual independence among their outcomes.The proposed framework gives rise to a relevance feedback mechanism in which positive and negative data are combined in order to optimally retrieve images according to the available information. A particular setting in which users interactively supply feedback and iteratively retrieve images is set both to model the system and to perform some objective performance measures.Several repositories using different image descriptors and corresponding similarity measures have been considered for benchmarking purposes. The results have been compared to those obtained with other representative strategies, suggesting that a significant improvement in performance can be obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 43, Issue 3, March 2010, Pages 619–629
نویسندگان
, , ,