کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533633 870143 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gaussian kernel optimization for pattern classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Gaussian kernel optimization for pattern classification
چکیده انگلیسی

This paper presents a novel algorithm to optimize the Gaussian kernel for pattern classification tasks, where it is desirable to have well-separated samples in the kernel feature space. We propose to optimize the Gaussian kernel parameters by maximizing a classical class separability criterion, and the problem is solved through a quasi-Newton algorithm by making use of a recently proposed decomposition of the objective criterion. The proposed method is evaluated on five data sets with two kernel-based learning algorithms. The experimental results indicate that it achieves the best overall classification performance, compared with three competing solutions. In particular, the proposed method provides a valuable kernel optimization solution in the severe small sample size scenario.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 7, July 2009, Pages 1237–1247
نویسندگان
, , , ,